

Welcome to BARK’s documentation!

Semantic simulation for interaction-aware multi agent planning.

	About BARK
	Need

	Approach

	BARK Architecture

	Changelog
	v0.1 (March 1, 2019)

	v0.2 (May 26, 2020)

First Steps:

	How to Install BARK
	Prerequisites

	Install using pip

	Setup on Linux

	Setup on MacOS

	Build Pip package

	Frequently Asked Questions (FAQs)

	Examples
	Merging Example

	Other Examples

Bark Modules:

	Models
	Behavior Models

	Execution Models

	Dynamic Models
	Single Track Model

	Behavior Models
	Constant Velocity Model

	Intelligent Driver Model
	Classic

	Lane Tracking

	Mobil Model

	Rule-based Models
	Lane Change Model

	Intersection Model

	Behavior Dynamic Model

	Behavior Motion Primitives

	World
	Observed World

	Objects and Agents

	MapInterface
	RoadGraph

	RoadCorridor

	LaneCorridor

	Runtime
	Scenario

	Scenario Generation

	Benchmarking

	Viewer

	Common
	Geometry

	BaseObject

	ParameterServer

Other:

	Debugging with VSCode
	Debugging C++ Code

	Debugging Python Code

	Debugging C++ and Python

	Memory Checking

	Profiling using Easy Profiler
	Step 1: Install Easy Profiler

	Step 2: Prepare BARK Project

	Step 3: Run BARK

	Step 4: Open Dump with Easy Profiler

	Coding Guidelines
	Coding Guidelines C++ Code

	Coding Guidelines Python

Indices and Tables

	Index

	Module Index

	Search Page

 [image: _images/bark_logo.jpg]

About BARK

The core focus of BARK is to develop and benchmark behavior models for autonomous agents – thus, Behavior BenchmARK.
BARK offers a behavior model-centric simulation framework that enables fast-prototyping and the development of behavior models.
Behavior models can easily be integrated — either using Python or C++.
Various behavior models are available ranging from machine learning to conventional approaches.

Need

Autonomous agents, such as traffic participants, need to make decisions in uncertain environments having many agents, which might be cooperative or possibly adversarial.
Research in decision making brought up many approaches from the fields of machine learning, game, and control theory.
However, transferring approaches to real-world applications, such as self-driving cars introduces several challenges, that prevent such systems to safely enter the market.
One of the remaining challenges is a quantification of the expected performance of behavior generation approaches under true environmental conditions, e.g. unknown behavior of other participants or uncertainty regarding the observations of the environment.
This challenge is currently approached by driving endless amounts of kilometers in simulation-based and in recorded scenarios.
However, such an approach impedes getting insights into the causes of performance differences of the evaluated approaches.
Implemented improvements of an approach require frequent re-evaluation over the whole set of scenarios.
To make behavior generation approaches ready for the real-world, an analysis framework should be established which can accurately model the divergence between real behavior of other participants and the behaviors generated by models (algorithms).
Such a framework would allow for a more thorough investigation of the expected performance of behavior generation approaches under true environmental conditions.
To make the claims of simulation-based performance results transferable to reality, benchmark scenario specifications must be selected according to certain coverage criteria and agreed on by the whole community of researchers and industry.
BARK tries to tackle and solve the above mentioned challenges and problems.

For more information have a look at our latest paper: BARK: Open Behavior Benchmarking in Multi-Agent Environments
 [https://arxiv.org/abs/2003.02604].

Approach

BARK is a multi-agent simulation tailored towards the use case of autonomous systems, with a special focus on autonomous driving.
Each agent is controlled by a behavior specification in the form of a behavior model.
Behavioral models can be easily exchanged and used both for simulation of other participants and/or as behavior prediction on the behavior generation side.
For this, BARK defines abstract interfaces for the development of own behavioral models but also delivers several state-of-the-art behavior models based on machine-learning and classical approaches.
By additionally having a set of metrics and functions that evaluate individual components, BARK acts as a comprehensive framework for the development and verification of behavior generation approaches.

BARK Architecture

BARK has a modular and exchangeable architecture that is composed of modules.
Core modules of BARK:

[image: _images/overview.png]

Changelog

v0.1 (March 1, 2019)

	Initial release

v0.2 (May 26, 2020)

	Road- and LaneCorridors

	Rule-based behavior models and Mobil

	Intersections and merging scenarios

	BenchmarkRunner and Evaluator

	Dataset replay agents

	Novel and upgraded scenario generation

	Many improvements and bug fixes

How to Install BARK

This section describes the prerequisites and installation-steps of BARK.

Prerequisites

	Bazel > 3(requires Java)

	Python3.7 (sudo apt-get install python3.7 python3.7-dev python3.7-tk)

	Virtual Env (pip3 install virtualenv==16.7.8) (note that the newest version does not seem to link the Python.h)

	gcc7 (needs to be set as the default compiler)

	Visual Studio Code

Using ad-rss-lib [https://github.com/intel/ad-rss-lib]

	sqlite 3 (sudo apt-get install libsqlite3-dev sqlite3)

Install using pip

	pip3 install bark-simulator

Setup on Linux

Optional: We recommend to use Anaconda. This way, you can create a clean python environment. After installation, create a conda env conda create --name bark_python_env python=3.7 and follow with activating it: conda activate bark_python_env. You can now proceed with the following:

	Use git clone https://github.com/bark-simulator/bark.git or download the repository from this page.

	Run bash install.sh: creates a virtual environment (located in python/venv) and installs all python packages

	Run source dev_into.sh: activates the virtual environment (make sure to run this before bazel)

	Use bazel test //... to validate that BARK is working.

	Finally, try one of the examples provided in BARK by running bazel run //examples:merging.

Setup on MacOS

	Install pyenv: brew install pyenv.

	Install a newer version of tcl-tk: brew upgrade tcl-tk.

	Run pyenv install python3.7-dev. If you run into trouble with TKInter have a look here [https://stackoverflow.com/questions/60469202/unable-to-install-tkinter-with-pyenv-pythons-on-macos].

	Set this as your global Python version: pyenv global 3.7-dev.

	Also add this Python version to your ~/.zshrc by adding eval "$(pyenv init -)".

	Install an older version of the virtualenv package by running: pip install virtualenv==16.7.8

	In order to set TKAgg as backend have a look here [https://stackoverflow.com/questions/21784641/installation-issue-with-matplotlib-python].

	Modify the file install.sh by using virtualenv -p python ./python/venv instead as python is now the pyenv version.

	Now you can follow the same steps as when using Linux.

Build Pip package

	Install twine using python3 -m pip install –user –upgrade twine

	Run script bash package.sh to build code, package and upload to pypi

Frequently Asked Questions (FAQs)

Python.h not found

Make sure that there is a ‘Python.h’ file in the python/venv folder.

GCC: Interal Compiler Error: Killed (program cc1plus)

You might be running out of memory during the bazel build.
Try limiting the memory available to bark via
bazel build //... --local_ram_resources=HOST_RAM*.4 (or any other build or test call).

Feel free to add your questions here or asks us directly by submitting an issue!

Examples

To get started with BARK, we provide several examples that show the basic functionality.
All examples are found in the /examples-directory of BARK.

Merging Example

In this example, we show the basic functionality of BARK using a merging scenario.
It can be ran using: bazel run //examples:merging.

[image: _images/bark_merging.gif]
BARK uses a ParameterServer() that stores all parameters of the simulation.
We can set parameters globally:

param_server["BehaviorIDMClassic"]["DesiredVelocity"] = 10.

We define the scenario using a scenario generation module of BARK.
In the following example, both lanes of the merging scenario are defined with a controlled agent on the right lane.

configure both lanes
left_lane = CustomLaneCorridorConfig(params=param_server,
 lane_corridor_id=0,
 road_ids=[0, 1],
 behavior_model=BehaviorMobilRuleBased(param_server),
 s_min=0.,
 s_max=50.)
right_lane = CustomLaneCorridorConfig(params=param_server,
 lane_corridor_id=1,
 road_ids=[0, 1],
 controlled_ids=True,
 behavior_model=BehaviorMobilRuleBased(param_server),
 s_min=0.,
 s_max=20.)

scenarios = \
 ConfigWithEase(num_scenarios=3,
 map_file_name="bark/runtime/tests/data/DR_DEU_Merging_MT_v01_shifted.xodr",
 random_seed=0,
 params=param_server,
 lane_corridor_configs=[left_lane, right_lane])

We then define the viewer and runtime in order to run and visualize the scenarios:

viewer = MPViewer(params=param_server,
 x_range=[-35, 35],
 y_range=[-35, 35],
 follow_agent_id=True)
env = Runtime(step_time=0.2,
 viewer=viewer,
 scenario_generator=scenarios,
 render=True)

Running scenarios can now be easily done as follows:

run 3 scenarios
for _ in range(0, 3):
 env.reset()
 for step in range(0, 90):
 env.step()
 time.sleep(sim_step_time/sim_real_time_factor)

However, BARK also provides a BenchmarkRunner that runs scenarios automatically and benchmarks the performance of behavior models.

Other Examples

The other examples can be run in a similar fashion using:

	bazel run //examples:highway: Two-lane highway example.

	bazel run //examples:intersection: Three way intersection.

	bazel run //examples:interaction_dataset: Dataset replay.

	bazel run //examples:benchmark_database: Benchmarks behaviors using a scenario database.

Models

Every agent in BARK has three models:

	Behavior Model

A model that generates the behavior (e.g. trajectory) of the agent.

	Execution Model

Validates the trajectory generated by the behavior-model (e.g. if it is dynamically feasible).

	Dynamic Model

Can be used by all models in order to plan and to validate the motion of an agent.

Behavior Models

In BARK all behavior models are derived from the BehaviorModel base-class.
This base class defines the interface that all behavior models need to implement.

Outline of the BehaviorModel base-class:

class BehaviorModel : public bark::commons::BaseType {
 public:
 explicit BehaviorModel(const commons::ParamsPtr& params,
 BehaviorStatus status)
 : commons::BaseType(params),
 last_trajectory_(),
 last_action_(),
 behavior_status_(status) {}
 ...
 virtual Trajectory Plan(float min_planning_time,
 const ObservedWorld& observed_world) = 0;
 private:
 dynamic::Trajectory last_trajectory_;
 Action last_action_;
 BehaviorStatus behavior_status_;
}

The Plan function returns a behavior for an agent for a given time-horizon (current world time + delta_time).
Each derived class implements its own Plan function.
The behavior models plan the motion using the ObservedWorld as described here.

Self-contained behavior models in BARK:

	BehaviorConstantAcceleration: Interpolates on a line with const. velocity.

	BehaviorIDMClassic: Interpolates on a line and uses the basic IDM equations.

	BehaviorIDMLaneTracking: Follows a line using a steering function for the single-track model and the basic IDM equations.

	BehaviorMobil: Full Mobil implementation.

	BehaviorLaneChangeRuleBased: Rule-based agent that changes to the lane with the most free-space.

	BehaviorMobilRuleBased: Simple rule-based Mobil implementation.

	BehaviorIntersectionRuleBased: Simple rule-based intersection behavior.

	BehaviorStaticTrajectory: Data-driven replay of agents in BARK.

Behavior models that need the action to be set externally:

	BehaviorDynamicModel: Action has to be set externally. Then uses a dynamic model in the step-function.

	BehaviorMPMacroActions: Macro actions, such as follow the lane or change the lane to the left.

	BehaviorMPContinuousActions: Motion primitives with continuous action specification.

Execution Models

The execution model can be viewed as the controller of the simulation.
For example, it can make the motion dynamically feasible or check its validity to enable more realistic simulations.

The class basic outline is given by:

class ExecutionModel : public commons::BaseType {
 public:
 explicit ExecutionModel(const bark::commons::ParamsPtr params) :
 BaseType(params),
 last_trajectory_() {}

 virtual ~ExecutionModel() {}

 Trajectory GetLastTrajectory() { return last_trajectory_; }

 void SetLastTrajectory(const Trajectory& trajectory) {
 last_trajectory_ = trajectory;
 }

 virtual Trajectory Execute(const float& new_world_time,
 const Trajectory& trajectory,
 const DynamicModelPtr dynamic_model,
 const State current_state) = 0;

 private:
 Trajectory last_trajectory_;
};

However, it is also possible to skip the execution model by using the ExecutionModelInterpolate.
This model assumes that the motion of the behavior model can always be followed.

Dynamic Models

Dynamic models in BARK can be used for planning and validating dynamic motions of agents, e.g. state-space trajectories.
All dynamic models are derived from the DynamicModel base-class.

The DynamicModel is given by:

class DynamicModel : public commons::BaseType {
 public:
 explicit DynamicModel(bark::commons::ParamsPtr params) :
 BaseType(params), input_size_(0) {}

 virtual ~DynamicModel() {}

 virtual State StateSpaceModel(const State &x, const Input &u) const = 0;

 virtual std::shared_ptr<DynamicModel> Clone() const = 0;

 int input_size_;
};

Each dynamic model, such as the single-track model implements its own StateSpaceModel function.
This allows for a flexible implementation of a vareity of linear and non-linear dynamic state-space models.

Single Track Model

By far the most used dynamic model in BARK, it the single-track model.
It represents a simplified bicycle vehicle-model.

The SingleTrackModel class overloads the StateSpaceModel function and is given by:

class SingleTrackModel : public DynamicModel {
 public:
 explicit SingleTrackModel(const bark::commons::ParamsPtr& params) :
 DynamicModel(params),
 wheel_base_(params->GetReal("DynamicModel::wheel_base",
 "Wheel base of vehicle [m]", 2.7)),
 steering_angle_max_(params->GetReal(
 "DynamicModel::delta_max", "Maximum Steering Angle [rad]", 0.2)),
 lat_acceleration_max_(
 params->GetReal("DynamicModel::lat_acc_max",
 "Maximum lateral acceleration [m/s^2]", 4.0)),
 lon_acceleration_max_(
 params->GetReal("DynamicModel::lon_acceleration_max",
 "Maximum longitudinal acceleration", 4.0)),
 lon_acceleration_min_(
 params->GetReal("DynamicModel::lon_acceleration_min",
 "Minimum longitudinal acceleration", -8.0)) {}
 virtual ~SingleTrackModel() {}

 State StateSpaceModel(const State& x, const Input& u) const {
 State tmp(static_cast<int>(StateDefinition::MIN_STATE_SIZE));
 tmp << 1,
 x(StateDefinition::VEL_POSITION) *
 cos(x(StateDefinition::THETA_POSITION)),
 x(StateDefinition::VEL_POSITION) *
 sin(x(StateDefinition::THETA_POSITION)),
 x(StateDefinition::VEL_POSITION) * tan(u(1)) / wheel_base_, u(0);
 return tmp;
 }
 ...

 private:
 double wheel_base_;
 double steering_angle_max_;
 double lat_acceleration_max_;
 float lon_acceleration_max_;
 float lon_acceleration_min_;
};

The equations of the single-track model can be written as:

\(L_f : \textrm{wheel-base}\)

The following equations present the model

\[\begin{split}\textrm{input vector: } \mathbf{u} = \left(
\begin{array}{c}
u_0\\
u_1\\
\end{array}
\right)
\begin{matrix}
\textrm{: acceleration}\\
\textrm{: steering angle}\\
\end{matrix}\end{split}\]

\[\begin{split}\textrm{state vector: } \mathbf{x} = \left(
\begin{array}{c}
t\\
x\\
y\\
\theta\\
v\\
\end{array}
\right)
\begin{matrix}
\textrm{: time}\\
\textrm{: x-position}\\
\textrm{: y-position}\\
\textrm{: vehicle-angle}\\
\textrm{: velocity}\\
\end{matrix}\end{split}\]

\[\begin{split}\mathbf{\dot{x}} = f(\mathbf{x},\mathbf{u}) = \left(
\begin{array}{c}
1\\
v \cdot cos(\theta)\\
v \cdot sin(\theta)\\
v \cdot \frac{tan(u_1)}{L_f}\\
u_0\\
\end{array}
\right)\end{split}\]

Behavior Models

Overview of all behavior models available in BARK.

Constant Velocity Model

The most basic model available in BARK, is the constant velocity behavior model.
The BehaviorConstantAcceleration class interpolates an agent along a set line with a constant velocity.
There are no collision checks and, thus, vehicles with different speeds can collide with each other.

Intelligent Driver Model

A more advanced behavior model in BARK is the intelligent driver model (IDM).
The BaseIDM class is the base class of all IDM models.
It provides all functions required for the calculation of the acceleration.

Classic

Similar to the constant velocity model, the BehaviorIDMClassic interpolates itself along a line.
Additionally, it changes the acceleration based on the free-road- and interaction-term to model realistic lane-following behavior.
Thus, if the initial conditions are feasible, the IDM normally does not cause any collisions.

Lane Tracking

The BehaviorIDMLaneTracking is similar to the classic IDM model but uses a dynamic model and steering function to follow a line.

Mobil Model

The Mobil model extends the IDM model even further.
It additionally checks, whether a lane-change would be beneficial for the ego vehicle as well as for the surrounding vehicles.
If the politeness parameter of the Mobil model is set to zero, it only checks how to proceed the fastest on a road (mult. lanes).

Rule-based Models

The rule-based models in BARK have been developed to allow more sophisticated behaviors, such as braking, changing lanes, and handling intersections.
One of the core concepts of these models is a filter function that allows formulating lambda-functions to sort out lane-corridors.
This filtering is versatile and e.g. can use the free-space on the other lane or more sophisticated methods.

Lane Change Model

There are two rule-based lane-changing models currently implemented in BARK: BehaviorLaneChangeRuleBased and BehaviorMobilRuleBased.
The BehaviorLaneChangeRuleBased class checks the free-space on all available lanes and changes to the one having the most free space.
The BehaviorMobilRuleBased class acts as the normal Mobil model, but only can change to filtered lanes (e.g. that have sufficient free-space).

Intersection Model

The intersection model can handle intersections of arbitrary shape.
It is prediction- and rule-based.
If an agent intersects the ego agent’s LaneCorridor first, the ego agent has to brake.
However, to avoid deadlocks (if both agents intersect at the same time), there is an additional right before left rule.
This model is not based on any literature but has empirically shown to work well.

Behavior Dynamic Model

This model is an externally controlled model, e.g. by a neural-network and requires the action to be set.
Once the action is set, the Step function of the BARK world can be called and the BehaviorDynamicModel will produce a trajectory using the set action.
This model is e.g. used in BARK-ML [https://github.com/bark-simulator/bark-ml].

Behavior Motion Primitives

In BARK there are macro and continuous motion primitives.
The macro motion primitives have actions, such as follow the lane or change the lane to the left.
The continous motion primitives use continuous action inputs and push these to a vector.

World

The world in BARK contains all objects of the simulation.
It is modeled as a simultaneous-move game where all agents act at the same time.
Each agent moves according to its defined behavior, execution, and dynamic model.
After all agents have been moved, the overall validity is then checked.

The World class is defined as

class World {
 public:
 void Step(float delta_time);
 ...
 private:
 MapInterface map_interface_;
 AgentMap agents_;
 ObjectMap objects_;
 double world_time_;
}.

The MapInterface contains the map, functionalities for routing, and simplified structures for the agents to plan in.
The AgentMap contains all agents of the simulation and the ObjectMap all static objects.
Finally, the World class also contains the simulation world time world_time_.

Observed World

In each simulation step, an agent in BARK gets passed an ObservedWorld that is derived from the current World.
The agent then plans in this derived world and returns a trajectory.
The ObservedWorld provides additional interfaces and allows to model further features, such as e.g. occlusions.
Besides providing additional functionalities, it also defines and saves the ego agent id ego_agent_id_.

class ObservedWorld : public World {
 public:
 ObservedWorld(const WorldPtr& world, const AgentId& ego_agent_id) :
 World(world),
 ego_agent_id_(ego_agent_id) {}
 ...
 private:
 AgentId ego_agent_id_;
};

Objects and Agents

In BARK objects are static and can be extended to dynamic agents.
Objects in BARK have a position, a shape, and an ObjectId.
The agent extends this by adding a behavior, execution, and dynamic model as described here.
Additionally, the agent also has a GoalDefinitionPtr and RoadCorridorPtr.

The agent class is defined as follows:

class Agent : public Object {
 public:
 friend class World;

 Agent(const State& initial_state,
 const BehaviorModelPtr& behavior_model_ptr,
 const DynamicModelPtr& dynamic_model_ptr,
 const ExecutionModelPtr& execution_model,
 const geometry::Polygon& shape,
 const commons::ParamsPtr& params,
 const GoalDefinitionPtr& goal_definition = GoalDefinitionPtr(),
 const MapInterfacePtr& map_interface = MapInterfacePtr(),
 const geometry::Model3D& model_3d = geometry::Model3D());
 ...
 private:
 BehaviorModelPtr behavior_model_;
 DynamicModelPtr dynamic_model_;
 ExecutionModelPtr execution_model_;
 RoadCorridorPtr road_corridor_;
 StateActionHistory history_;
 uint32_t max_history_length_;
 GoalDefinitionPtr goal_definition_;
};

MapInterface

The MapInterface class implements all map-related features for BARK.
It stores the raw OpenDrive [http://www.opendrive.org/download.html] map, has a RoadGraph for routing, and provides convenient and easy-to-use classes for the agents ‐ the RoadCorridor and the LaneCorridor.

The MapInterface class is implemented as follows:

class MapInterface {
 public:
 ...
 private:
 OpenDriveMapPtr open_drive_map_;
 RoadgraphPtr roadgraph_;
 rtree_lane rtree_lane_;
 std::pair<Point2d, Point2d> bounding_box_;
 std::map<std::size_t, RoadCorridorPtr> road_corridors_;
}

Additionally, the MapInterface also has an lane r-tree for more performant lane searching.

The OpenDriveMap class implements the specifications provided by the OpenDRIVE 1.4 Format [http://www.opendrive.org/download.html].
This allows an easy parsing and integration of maps available in the OpenDrive format.
However, for better usability we encapsulate this specification using a RoadGraph, RoadCorridors, and LaneCorridors.

The basic structure of the OpenDriveMap map class:

class OpenDriveMap {
 public:
 OpenDriveMap() : roads_(), lanes_(), junctions_() {}
 ~OpenDriveMap() {}
 ...
 private:
 XodrRoads roads_;
 XodrLanes lanes_;
 Junctions junctions_;
}

RoadGraph

The RoadGraph contains all roads and lanes and their physical location in a graph structure.
This enables easy routing functionality for an agent in BARK.
The physical locations of the start and goal are sufficient in order to obtain a sequence of lanes or roads for the agent.

However, in order to store this information more efficiently and to increase usability, we additionally use RoadCorridors and LaneCorridors.

RoadCorridor

A RoadCorridor is composed out of a sequential sequence of roads that an agent in BARK can follow.
It contains all the OpenDrive information as well as further information in the form of the LaneCorridor.
The RoadCorridor provides an easy-to-use interface by providing functions that tell an agent the current lane and what it left or right lanes are.

The basic structure of the RoadCorridor map class:

struct RoadCorridor {
 ...
 Roads roads_;
 Polygon road_polygon_;
 std::vector<LaneCorridorPtr> unique_lane_corridors_;
 std::vector<XodrRoadId> road_ids_;
 std::map<LaneId, LaneCorridorPtr> lane_corridors_;
}

LaneCorridor

A LaneCorridor is continuously, sequentially concatenated lanes.
It provides many utility functions, such as the distance to the end of the LaneCorridor, the merged lane polygon, the boundaries, and more.

struct LaneCorridor {
 ...
 std::map<float, LanePtr> lanes_; // s_end, LanePtr
 Line center_line_;
 Polygon merged_polygon_;
 Line left_boundary_;
 Line right_boundary_;
}

Runtime

The runtime module implements the actual simulation in Python.
It provides a similar interface as the OpenAI Gym [https://gym.openai.com/] environments.

class Runtime(PyRuntime):
 def __init__(self,
 step_time,
 viewer,
 scenario_generator=None,
 render=False):
 self._step_time = step_time
 self._viewer = viewer
 self._scenario_generator = scenario_generator
 self._scenario_idx = None
 self._scenario = None
 self._render = render
 ...

 def reset(self, scenario=None):
 ...

 def step(self):
 ...

 def render(self):
 ...

The runtime has a scenario generator that fills in the self._scenario and ID of the current scenario self._scenario_idx.

Scenario

The scenario fully defines the initial state of the simulation, such as the agent’s positions and models.

The outline of the Scenario class is given by:

class Scenario:
 def __init__(self,
 agent_list=None,
 eval_agent_ids=None,
 map_file_name=None,
 json_params=None,
 map_interface=None):
 self._agent_list = agent_list or []
 self._eval_agent_ids = eval_agent_ids or []
 self._map_file_name = map_file_name
 self._json_params = json_params
 self._map_interface = map_interface
 ...

It also specifies which agents should be evaluated using self._eval_agent_ids.

Scenario Generation

A scenario generation in BARK returns a list of scenarios of the type Scenario.
These can be run by the BARK runtime or by the BenchmarkRunner.

Currently available scenario generators:

	ConfigurableScenarioGeneration: Sophisticated scenario generation providing conflict resolution.

	UniformVehicleDistribution: Samples the agents uniformly and their parameters.

	ConfigWithEase: Configure any scenario fast and with ease.

	DeterministicScenarioGeneration: Deterministic, reproducible scenario generation.

Benchmarking

BARK provides a BenchmarkRunner and BenchmarkAnalyzer to automatically run and verify the performance of novel behavior models.

Viewer

A common viewer interface allows easy extension of visualization capabilities of Bark.

Several viewer modules are currently available:

	MPViewer: Matplotlib viewer for scientific documentation.

	Panda3dViewer: 3D-Visualization.

	PygameViewer: Gym-like visualization of the BARK environment.

Common

Commonly used classes and functions in BARK.

Geometry

BARK provides an easy-to-use geometry library that supports points, lines, and polygons for performant geometric calculations.
By wrapping the boost::geometry state-of-the-art algorithms as well as high usability is provided.
It implements all geometric functions, such as collision checks and distance calculations.

BaseObject

All objects in BARK share a common base class, the BaseType.
It provides functionalities and members that are shared and used in all classes.
For example, it contains the global ParameterServer instance that holds all parameters.

class BaseType {
 public:
 explicit BaseType(ParamPtr params) : params_(params) {}
 ~BaseType() {}

 ParamPtr GetParams() const { return params_;}
 ...
 private:
 ParamPtr params_;
};

ParameterServer

The ParameterServer is shared with all objects in BARK.
Its abstract implementation is reimplemented in Python.
Child nodes can be added by using the AddChild-function.

class Params {
 public:
 Params() {}

 virtual ~Params() {}

 // get and set parameters as in python
 virtual bool GetBool(const std::string ¶m_name,
 const std::string &description,
 const bool &default_value) = 0;

 virtual float GetReal(const std::string ¶m_name,
 const std::string &description,
 const float &default_value) = 0;

 virtual int GetInt(const std::string ¶m_name,
 const std::string &description,
 const int &default_value) = 0;

 // not used atm
 virtual void SetBool(const std::string ¶m_name, const bool &value) = 0;
 virtual void SetReal(const std::string ¶m_name, const float &value) = 0;
 virtual void SetInt(const std::string ¶m_name, const int &value) = 0;

 virtual int operator[](const std::string ¶m_name) = 0;

 virtual ParamPtr AddChild(const std::string &name) = 0;
};

Debugging with VSCode

Debugging C++ Code

First, you need to build BARK in the debug mode using

bazel build //... --compilation_mode=dbg

Additionally, you need to modify the .vscode/launch.json in Visual Studio Code and then launch the debugger (F5 in the current file).

{
 "name": "(gdb) Launch",
 "type": "cppdbg",
 "request": "launch",
 "program": "${workspaceFolder}/bazel-bin/{path-to-executable-file}",
 "args": [],
 "stopAtEntry": true,
 "cwd": "${workspaceFolder}",
 "environment": [],
 "externalConsole": true,
 "MIMode": "gdb",
 "setupCommands": [
 {
 "description": "Enable pretty-printing for gdb",
 "text": "-enable-pretty-printing",
 "ignoreFailures": true
 }
]
}

Now, you can set breakpoints and debug the c++ code.

Debugging Python Code

To debug python code, you need to add the following code in the .vscode/launch.json:

{
 "name": "Python: Current File",
 "type": "python",
 "request": "launch",
 "program": "${file}",
 "console": "integratedTerminal",
 "env": {
 "PYTHONPATH": "${workspaceFolder}/bazel-bin/examples/{path-to-executable-file}.runfiles/__main__/python:${workspaceFolder}/bazel-bin/examples/{path-to-executable-file}.runfiles/__main__"
 }
}

Make sure to be in the main executable file when launching the debugger (F5).

Debugging C++ and Python

Here, both debuggers need to be run in parallel.
First, we need to build the “bark.so” in the debug mode by running bazel build //... --compilation_mode=dbg.
You can also check if the “bark.so” contains debug symbols by running readelf --debug-dump=decodedline bark.so.
Then, add the following launch configuration and adapt the path in the .vscode/launch.json:

{
 "name": "(gdb) Attach",
 "type": "cppdbg",
 "request": "attach",
 "program": "${workspaceFolder}/python/venv/bin/python3",
 "cwd" : "${workspaceFolder}",
 "additionalSOLibSearchPath":"${workspaceFolder}/bazel-bin/examples/{path-to-executable-file}.runfiles/__main__/python",
 "processId": "${command:pickProcess}",
 "MIMode": "gdb",
 "sourceFileMap" : {"/proc/self/cwd/": "${workspaceFolder}"},
}

Debugging process:

	Add a breakpoint in the python file you want to debug, somewhere before an interesting code section, run the launch configuration “Python: Current File” (see before) and wait until the breakpoint is reached.

	Run the “(gdb) Attach” launch configuration, select the python interpreter whose path contains “/.vscode/”. You will be promted to enter your user password.

	Set breakpoints in the C++ Files

	The python debugger is currently stopped at a break point. Switch back from the debugger “(gdb) Attach” to the other debugger “Python: Current File” and press F5 (Continue). Now, vscode automatically jumps between the two debuggers between python and c++ code.

Memory Checking

Use Valgrind to profile the code in order to find memory leaks.

	Build the target with debug symbols, i.e. bazel test //bark/world/tests:py_map_interface_tests --compilation_mode=dbg

	Profile via valgrind --track-origins=yes --keep-stacktraces=alloc-and-free --leak-check=full ./bazel-bin/{path-to-executable-file}.

Profiling using Easy Profiler

Step 1: Install Easy Profiler

Install Qt5 (Paket qt5-default), see https://wiki.ubuntuusers.de/Qt/.
Clone https://github.com/yse/easy_profiler and build easy profiler.
Then install easy profiler using make install and add to ld_path using ldconfig

Step 2: Prepare BARK Project

Make sure to have build:easy_profiler --linkopt='-L/usr/local/lib/ -leasy_profiler' --copt='-DBUILD_WITH_EASY_PROFILER'in your bazel.rc file.
Include easy_profiler using \#include <easy/profiler.h>.
In every function, you want to profile, write EASY_FUNCTION(); at the beginning.
Defining the functions void profiler_startup() and void profiler_finish(), for example in some utility function

void profiler_startup() {
 EASY_PROFILER_ENABLE;
// profiler::startListen();
}

void profiler_finish() {
 auto blocks_written = profiler::dumpBlocksToFile("/tmp/<some example>.prof");
 LOG(INFO) << "Easy profiler blocks written: " << blocks_written;
}

and wrap them to Python.
In the python runtime, you then have to call them before and after the code you want to profile.

Step 3: Run BARK

The run: bazel run --config=easy_profiler <some example target>
Make sure to only run a short example, otherwise the profiling dump will get too big.
Profiling Dump should now be in /tmp/<some example>.prof.

Step 4: Open Dump with Easy Profiler

Go to the build directory of easy_profiler and run bin/profiler_gui.
You then can use the GUI to open the dump file.

Coding Guidelines

We use the Google Style Guides for Python and C++ as a reference.

Coding Guidelines C++ Code

For C++ code, we use cpplint.
It is installed automatically within your virtual environment.
However, to use it in VS Code, we use the VS Code Extension cppline (Developer: mine, version 0.1.3).
You can install it in the market place. When installed, rightclick on the extension and select “Configure Extension Settings”.
You now need to define the path to cpplint as local user.

Cpplint: Cpplint Path
The path to the cpplint executable. If not set, the default location will be used.
/(YOUR LOCAL PATH FOR BARK)/bark/python/venv/bin/cpplint

Coding Guidelines Python

Pylint and autopep8 are installed automatically to your virtual environment.
When sourced in your VS Code terminal, you should be able to only click “Format Document”.
In case it asks for formatting guide, select pep8.
However, this should come automatically with .vscode/settings.json.

Index

Pip Package Guide

Code Structure

This guide describes the updates to bark probject as part of pip packaging work and builds upon bark with updated directory structure for concise import paths, along with other changes and updates required for the packaging process.

All the modules are now sub-module of main bark module, and are imported w.r.t it. C++ python bindings previously in python folder are now in python_wrapper folder under bark main directory and similarly components from module directory are also placed directly under bark directory. C++ python library is renamed core.so from bark.so and all modules imported from the C++ library are under bark.core.*.

The import paths have been updated from following

from modules.runtime.commons.parameters import ParameterServerfrom bark.world import World

to a more concise format as

from bark.runtime.commons import ParameterServerfrom bark.core.world import World

Build Package source

To have all the modules, together in a single library, a py_binary target //bark:pip_packageis created with all the py_library’s as its dependencies. Upon successful build of this target, all the modules are found under bark_project (workspace name) in the pip_package.runfiles directory in the out folder, together with their dependencies in the external folder. The content under this bark_project directory is later combined into a wheel package.

PATH Update

As Bazel automatically handles managing paths for dependencies when running a target, for a pip package it has to be performed manually and is done in __init__.py file in the main bark directory. Here we update the path with all the external projects and packages that are required in bark code.

Build Tests

Similar to Bazel testing bazel test //... , it has to be ensured that, all tests execute during packaging, albeit under a different environment without Bazel.
To ensure all the tests are also included in the generated out folder, a new Bazel test target is created with all the tests as its dependencies and this target is added as dependency to the //bark:pip_package target which causes the tests to be placed in the out directory following the same relative path structure as for other code.

Note: Test execution is discussed under Packaging.

Data Paths

Tests implemented for the modules and sub-modules(as Bazel py_test targets) import required data w.r.t main Bazel WORKSPACE path not w.r.t that respective module, and as Bazel manages the paths for targets it runs so it does not pose an issue as it runs all code from main bazel out directory. In a pip package, the paths are different depending upon where the packages are installed and from where the user is executing the code, therefore the code has to be updated to import required data files by combining the absolute path of the package directory(not the user current path) with the relative target w.r.t the package.

For example to load a data, previously it was implemented as

xodr_parser = XodrParser("bark/runtime/tests/data/Crossing8Course.xodr")

Now, we need to specify the path relative wrt the respective module.

xodr_parser = XodrParser(os.path.join(os.path.dirname(__file__),"data/Crossing8Course.xodr"))

Note: The change does not affect the bazel tests as using absolute path instead of relative results in same path anyways.

Packaging

After successful build of //bark:pip_package , the packaging process takes place under the generated respective runfiles directory as mentioned earlier.A provided bash script package.sh manages the complete process from code compiling and pip package generation to uploading to PyPi. The process shall be discussed after a brief introduction of the components required to generate the package.

This script setup.py identifies a python code directory along with sub directories containing __init__.py as a potential pip package and provides interface upon which the pip package is built and includes details about basic package information like description, version and dependencies etc.

Automating Script

A script package.sh is provided which handles the complete pipeline for package generation & distribution as a python library. This script performs the following tasks:

	Compile Bazel target representing the pip package //bark:pip_package

	Copy setup.py, LICENSE, readme.md to the target location in the package.runfiles generated directory so they can be added to the wheel package.

	Generate MANIFEST.in

	This file includes the list of all the required data files that have to be added to the package but are not a standard python script so they have to be manually identified

	To generate this file, we make use of a file called MANIFEST that is auto generated by bazel for the respective target and is present in the aforementioned out generated directory.

Run tests

	Building pip_package also builds all tests and as like other targets, tests are copied in the respective folders in the out path

	The setup.py makes use of test suite nose.collector to identify all the unitest’s in the code directory.

	python3 setup.py test executes the tests.

	If any test fail the script stops and exits with an Error message.

Build and distribute

After successful completion of tests, the package is built using

	python3 setup.py sdist bdist_wheel

Note: The above command automatically identifies if the code is pure python package, in which case the package is available for all platforms and configurations. In our case we make use of locally compiled thus platform dependentcore.so shared library(exposing C++ functionality of Bark API) .
But as the Library is not compiled using setup.py script so the script does not identify the shared library and considers the package as a standard python package. Adding an extra empty extension under ext_modules instructs the package building code to mark the wheel file as a platform dependent code, thus generating a wheel file for the specific build platform.
Therefore, when installing the package using pip install .. the pip will pick the appropriate wheel to install.
This approach works for non Linux distributions only as setup.py generates literal platform specific versions for non Linux OS’s while for all the Linux distros it generates a generic linux_x86_64 tag, which is rejected by PyPi repository. For Linux, the PyPi standard [https://packaging.python.org/specifications/platform-compatibility-tags/] requires that a standard docker image called manylinux [https://github.com/pypa/manylinux] be used for building the wheel.
The process for building pip package in the specified docker container has some complications caused by Bazel support along with C++ libraries. so the current approach is to have version specific wheels for Mac OS and a generic wheel for Linux based systems that is build on Ubuntu 64. It shall not work with all of Linux distros but shall be compatible with most of debian based architectures.

Once a wheel is built, it can be uploaded to PyPi repository python3 -m twine upload --skip-existing dist/*

 _static/up-pressed.png

_static/up.png

_images/bark_logo.jpg
BARK

Behavior Benchmark

_images/bark_merging.gif

_images/overview.png
Not yet implemented

_ Runtime S Implemented
Benchmark ¢ |
Visualization z
+ World
XodrMap World VehicleAgent BehaviorModels
Import Scenario Behaviore ConstantVelocity
RoadNetwork + Map Model IntelligentDriver
LaneGeometry Agents ¢ ObservedWorld MOBIL
. Gibbs
Dynamics
Execution

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to BARK’s documentation!

 		
 About BARK

 		
 Need

 		
 Approach

 		
 BARK Architecture

 		
 Changelog

 		
 v0.1 (March 1, 2019)

 		
 v0.2 (May 26, 2020)

 		
 How to Install BARK

 		
 Prerequisites

 		
 Using ad-rss-lib

 		
 Install using pip

 		
 Setup on Linux

 		
 Setup on MacOS

 		
 Build Pip package

 		
 Frequently Asked Questions (FAQs)

 		
 Python.h not found

 		
 GCC: Interal Compiler Error: Killed (program cc1plus)

 		
 Feel free to add your questions here or asks us directly by submitting an issue!

 		
 Examples

 		
 Merging Example

 		
 Other Examples

 		
 Models

 		
 Behavior Models

 		
 Execution Models

 		
 Dynamic Models

 		
 Single Track Model

 		
 Behavior Models

 		
 Constant Velocity Model

 		
 Intelligent Driver Model

 		
 Classic

 		
 Lane Tracking

 		
 Mobil Model

 		
 Rule-based Models

 		
 Lane Change Model

 		
 Intersection Model

 		
 Behavior Dynamic Model

 		
 Behavior Motion Primitives

 		
 World

 		
 Observed World

 		
 Objects and Agents

 		
 MapInterface

 		
 RoadGraph

 		
 RoadCorridor

 		
 LaneCorridor

 		
 Runtime

 		
 Scenario

 		
 Scenario Generation

 		
 Benchmarking

 		
 Viewer

 		
 Common

 		
 Geometry

 		
 BaseObject

 		
 ParameterServer

 		
 Debugging with VSCode

 		
 Debugging C++ Code

 		
 Debugging Python Code

 		
 Debugging C++ and Python

 		
 Memory Checking

 		
 Profiling using Easy Profiler

 		
 Step 1: Install Easy Profiler

 		
 Step 2: Prepare BARK Project

 		
 Step 3: Run BARK

 		
 Step 4: Open Dump with Easy Profiler

 		
 Coding Guidelines

 		
 Coding Guidelines C++ Code

 		
 Coding Guidelines Python

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

